
Existing architectures cannot simultaneously be 
fast, elastic and secure

Research improving SFI:
• Swivel (USESec’21) → Harden SFI against HW, 5-240% slower
• Hardware Fault Isolation → Special hardware extension
• Wasm compiler optimizations → 10% perf. improvement
Research improving MicroVM:
• μSwitch (IEEE S&P’23) → Faster + avoid unnecessary switches
• LittleMac→ Secure, Programmable Isolation + Sharing
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Cloud Services waste 25% of Compute

• Monolithic architectures (Google, Facebook, etc.) incur high 
overheads
• CPU wastes 25% of cycles on preparing communication
• High tail latencies due to dependencies

• Moving to logically decomposed services improves: 
• Developer productivity by 10x 
• Isolation of security vulnerabilities
• Scaling service elastically with load
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The Rise of Memory-Safe Languages

70% of security vulnerabilities are 
caused by memory-safety violations.

Memory-Safe Languages prevent violations
at compile time at runtime
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Vision: Fast, Elastic, Secure Memory-Safe 
Software & Hardware Architecture

Key Insight:

Collapse services and protect with memory-safe languages

• Memory-Safe Languages restrict
• Access to service’s memory
• Execution to predefined entry points in services
➢ Eliminates the use of CPU security domains
➢ 20x faster creation
➢ 100x more domains

• Sharing between OS and service is a function call
• No marshalling of complex structures
• No copy to/from service, all memory is shared
• No synchronization via thread migration
• Kernel bypass for remote communication
➢ Regain 25% of CPU cycles wasted for communication
➢ Improve tail-latency due to complex synchronization 

chains

Challenges and Opportunities: 
Safe & Efficient SW/HW Abstraction with Legacy Support

Challenge of Memory-Safe Language Security:
• Dependence on trusting the compiler and runtime toolchain
• Research directions:
• Verified compilers and runtimes
• Trusted Hardware support for memory-safe languages
• Trusted supply chain with runtime validation

Challenge of Legacy Service Support:
• Legacy services are not written in memory-safe languages
• Without legacy support, slow adoption
• Research and Industry directions:
• Wasm as compilation target for many languages
• Memory-safe implementations of important interpreters
• Light-weight hardware technique restricting access to memory regions

Optimization of a Memory-Safe CPU:
• Memory layout of memory-safe languages is simpler than usual applications
• Statically bind virtual to physical mapping to reduce page miss handler
• Memory address translation in 1 cycle instead of 4, no page miss handler

Challenge and Optimization of Secure Sharing between Services:
• Revocation of sharing not possible in single address space with today’s CPU
• Capability-based Hardware (e.g., CHERI or Cryptographic Computing)
• Offer memory permission at sub-page granularity
• Sharing via forwarding of capabilities instead of pointers

multiPIE Approach: 
Fast, Efficient and Secure 

Software Runtime

Single-Process Software Model for all Services

• multiPIE capabilities:
• Supports legacy executables, containers and Wasm 

modules 
• Loads existing service packages
• Multiplexes system resources (e.g., files)
• Is written in Rust to statically and automatically 

validate implementation against safety guarantees
• Optimizes interactions between services and OS

• multiPIE is an intermediate layer:
• Validate sharing abstractions between services
• Demonstrate best case performance
• Explore limitations of today’s CPUs
• Evaluate proposed CPU techniques
• Offer new software model to industry
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