
Existing architectures cannot simultaneously be 
fast, elastic and secure

Research improving SFI:
• Swivel (USESec’21) → Harden SFI against HW, 5-240% slower
• Hardware Fault Isolation → Special hardware extension
• Wasm compiler optimizations → 10% perf. improvement
Research improving MicroVM:
• μSwitch (IEEE S&P’23) → Faster + avoid unnecessary switches
• LittleMac→ Secure, Programmable Isolation + Sharing

The Rise of Memory-Safe Languages: 
Building a Fast, Elastic, Secure Software & Hardware Architecture

Anjo Vahldiek-Oberwagner (Intel Labs)

Cloud Services waste 25% of Compute

• Monolithic architectures (Google, Facebook, etc.) incur high 
overheads
• CPU wastes 25% of cycles on preparing communication
• High tail latencies due to dependencies

• Moving to logically decomposed services improves: 
• Developer productivity by 10x 
• Isolation of security vulnerabilities
• Scaling service elastically with load

Distributed Cloud Service:

Collections of communicating
Services

Hypervisor

MicroVM

CPU

OS

f(x)

SFI MicroVM multiPIE

Execution 20-40% slower Native Native

Creation 5 ms 20x slower <10ms

Domains 10,000 100x fewer 100,000s

Switch time 2 ns > 1,000 ns <10ns

Security HW Attacks Strong Strong

Sharing 5-10% wasted 25% wasted instant

Software-Fault 
Isolation (SFI)

SFI Runtime

f(x)

Hypervisor

CPU

Operating 
System(OS)

f(x)
f(x)f(x)

OS

f(x)

The Rise of Memory-Safe Languages

70% of security vulnerabilities are 
caused by memory-safety violations.

Memory-Safe Languages prevent violations
at compile time at runtime

• Ownership 
• Comparable performance

Rust

Sandbox

Wasm 
Module Linear Memory

Stack Heap

Wasm Runtime

• Virtual Machine
• 20-40% performance

overhead

CPU Security Domain

Memory

Data Object

Allowed
Violates 
memory-
safety

Pointer

CPUExecute

Mem-Safe 
Binary

Source
Code

010
100

Vision: Fast, Elastic, Secure Memory-Safe 
Software & Hardware Architecture

Key Insight:

Collapse services and protect with memory-safe languages

• Memory-Safe Languages restrict
• Access to service’s memory
• Execution to predefined entry points in services
➢ Eliminates the use of CPU security domains
➢ 20x faster creation
➢ 100x more domains

• Sharing between OS and service is a function call
• No marshalling of complex structures
• No copy to/from service, all memory is shared
• No synchronization via thread migration
• Kernel bypass for remote communication
➢ Regain 25% of CPU cycles wasted for communication
➢ Improve tail-latency due to complex synchronization 

chains

Challenges and Opportunities: 
Safe & Efficient SW/HW Abstraction with Legacy Support

Challenge of Memory-Safe Language Security:
• Dependence on trusting the compiler and runtime toolchain
• Research directions:
• Verified compilers and runtimes
• Trusted Hardware support for memory-safe languages
• Trusted supply chain with runtime validation

Challenge of Legacy Service Support:
• Legacy services are not written in memory-safe languages
• Without legacy support, slow adoption
• Research and Industry directions:
• Wasm as compilation target for many languages
• Memory-safe implementations of important interpreters
• Light-weight hardware technique restricting access to memory regions

Optimization of a Memory-Safe CPU:
• Memory layout of memory-safe languages is simpler than usual applications
• Statically bind virtual to physical mapping to reduce page miss handler
• Memory address translation in 1 cycle instead of 4, no page miss handler

Challenge and Optimization of Secure Sharing between Services:
• Revocation of sharing not possible in single address space with today’s CPU
• Capability-based Hardware (e.g., CHERI or Cryptographic Computing)
• Offer memory permission at sub-page granularity
• Sharing via forwarding of capabilities instead of pointers

multiPIE Approach: 
Fast, Efficient and Secure 

Software Runtime

Single-Process Software Model for all Services

• multiPIE capabilities:
• Supports legacy executables, containers and Wasm 

modules 
• Loads existing service packages
• Multiplexes system resources (e.g., files)
• Is written in Rust to statically and automatically 

validate implementation against safety guarantees
• Optimizes interactions between services and OS

• multiPIE is an intermediate layer:
• Validate sharing abstractions between services
• Demonstrate best case performance
• Explore limitations of today’s CPUs
• Evaluate proposed CPU techniques
• Offer new software model to industry

Compile

Memory Safety 
Boundary

Optimized Central Processing Unit (CPU)

Operating System (OS)

Reservation

Devices

NetFSScheduler
GeoLocation

Discovery CPU Security Domain

Memory Safety 
Boundary

multiPIE

PIE 
Executable

OS

CPU

Container Wasm

MPK VMFUNC


