intel.

The Rise of Memory-Safe Languages:

Building a Fast, Elastic, Secure Software & Hardware Architecture

Anjo Vahldiek-Oberwagner (Intel Labs)

02131%1? RISER

forward.darpa.mil

Cloud Services waste 25% of Compute

* Monolithic architectures (Google, Facebook, etc.) incur high
overheads
 (CPU wastes 25% of cycles on preparing communication
* High tail latencies due to dependencies
* Moving to logically decomposed services improves:
* Developer productivity by 10x
» |solation of security vulnerabilities
* Scaling service elastically with load

Distributed Cloud Service: _ @
)
®_O

Collections of communicating ;l
Services

Vision: Fast, Elastic, Secure Memory-Safe
Software & Hardware Architecture

Key Insight:

Collapse services and protect with memory-safe languages

' Reservation
GeOLOC§tIOn . ’I’V.I Scheduler FS Net Memory Safety
D:DJ .&. Boundary

Devices Discovery

Operating System (OS) = CPU Security Domain

Optimized Central Processing Unit (CPU)

 Memory-Safe Languages restrict
 Access to service's memory
* Execution to predefined entry points in services
» Eliminates the use of CPU security domains
» 20x faster creation
» 100x more domains

* Sharing between OS and service is a function call
 No marshalling of complex structures
* No copy to/from service, all memory is shared
* No synchronization via thread migration
* Kernel bypass for remote communication
» Regain 25% of CPU cycles wasted for communication
» Improve tail-latency due to complex synchronization

chains

Existing architectures cannot simultaneously be
fast, elastic and secure

SFI MicroVM | multiPIE Software-Fault MicroVM
Execution [20-40% slower |Native Native Isolation (SFI)
Creation 5ms 20x slower |<10ms m —m
Domains 10,000 100x fewer |100,000s SFIRuntime fix) | | f(x)
Switch time |2 ns >1000ns |<10ns Sefteer;t('gé) os | | os
Security HW Attacks Strong Strong Hypervisor Hypervisor
Sharing 5-10% wasted |25% wasted |instant S cPU

Boundary

Research improving SFI:

» Swivel (USESec'21) = Harden SFl against HW, 5-240% slower [JC SanDiegO

Memory Safety o cpy Security Domain

 Hardware Fault Isolation = Special hardware extension

* Wasm compiler optimizations =2 10% perf. improvement
Research improving MicroVM:

* uSwitch (IEEE S&P’'23) - Faster + avoid unnecessary switches
* LittleMac = Secure, Programmable |solation + Sharing

PURDUE

UNIVERSITY

Challenges and Opportunities:
Safe & Efficient SW/HW Abstraction with Legacy Support

Challenge of Memory-Safe Language Security:
* Dependence on trusting the compiler and runtime toolchain
* Research directions:

» Verified compilers and runtimes

* Trusted Hardware support for memory-safe languages

* Trusted supply chain with runtime validation

Challenge of Legacy Service Support:
* Legacy services are not written in memory-safe languages
» Without legacy support, slow adoption
* Research and Industry directions:
 Wasm as compilation target for many languages
 Memory-safe implementations of important interpreters
* Light-weight hardware technique restricting access to memory regions

Optimization of a Memory-Safe CPU:

 Memory layout of memory-safe languages is simpler than usual applications
« Statically bind virtual to physical mapping to reduce page miss handler
 Memory address translation in T cycle instead of 4, no page miss handler

Challenge and Optimization of Secure Sharing between Services:
» Revocation of sharing not possible in single address space with today’'s CPU
» (Capability-based Hardware (e.g., CHERI or Cryptographic Computing)

« Offer memory permission at sub-page granularity

* Sharing via forwarding of capabilities instead of pointers

The Rise of Memory-Safe Languages

70% of security vulnerabilities are Memory o | “Allowed
. . Pointer WEViolates
caused by memory-safety violations. . memory-
Data Object
safety
Memory-Safe Languages prevent violations
at compile time at runtime

® wn

Rust WEBASSEMBLY
Wasm tack| Heap
MOdUleHiEmear Memory
Sandbox
Source Mem-Safe — _Rt'
Code Binary asm rRuntime

 Virtual Machine
e 20-40% performance
overhead

 Ownership
 Comparable performance

|
|
|
|
|
I
|
|
|
—\ |
|
Compile Execute)CPU |
I
|
|
|
|
|
|
|
I
|
|
|
|

multiPIE Approach:
Fast, Efficient and Secure
Software Runtime

Single-Process Software Model for all Services

 multiPIE capabilities:

* Supports legacy executables, containers and Wasm
modules

* |Loads existing service packages

* Multiplexes system resources (e.g., files)

* |s written in Rust to statically and automatically
validate implementation against safety guarantees

* QOptimizes interactions between services and OS

 multiPIE is an intermediate layer:
* Validate sharing abstractions between services
 Demonstrate best case performance
* Explore limitations of today’s CPUs
* Evaluate proposed CPU technigues
* Offer new software model to industry

