
Proving Attributes about Confidential Compute Services with
Validation and Endorsement Services

Anjo Vahldiek-Oberwagner
Intel Labs

Berlin, Germany
anjovahldiek@gmail.com

Marcela S. Melara
Intel Labs

Hillsboro, OR, USA
marcela.melara@intel.com

Abstract—We propose validation and endorsement services
(VES), an abstract architecture for establishing trust in
confidential compute services (CCS), such as confidential AI
applications, that address two main challenges in current
remote attestation frameworks. First, we form a hierarchy
of VESes, enabling in-band validation of CCS workload
attributes, which delegates trust to the VESes. Upon val-
idation, VESes efficiently store endorsements for future
lookups about a CCS. Second, VESes facilitate the dynamic
discovery of verified CCSes that meet specified attributes.
Our abstraction ultimately aims to enhance the flexibility
and trustworthiness of confidential compute deployments.

Index Terms—Confidential Computing, Trusted Execution
Environments, Attestation

1. Motivation and Problem Statement

Hardware-based trusted execution environments
(TEEs) are commonly used in confidential cloud
computing deployments like confidential AI [12]. A core
feature of TEEs is remote attestation, which authenticates
the initial state of the TEE. The attestation is typically
over one or more secure hashes [5], [6] of the memory
footprint, and digitally signed with a device-specific
cryptographic key. In the case of confidential VMs
(cVMs), the attestation process involves initializing
the Open Virtual Machine Firmware (OVMF) and
performing trusted boot with runtime measurement
registers (RTMRs) [6] or a virtual trusted platform
module (TPM). These mechanisms combined allow
remote parties to ascertain that the desired TEE was
created and expected code was successfully loaded and
started [2]. Unfortunately, cVM properties like memory
size and other sometimes proprietary information (like
the OVMF image hash) may overwrite the attestation
hashes and make them unusable for third parties. Cloud
providers have sought to address this issue by publishing
so-called golden values (i.e., known good hash values) as
a baseline for validating cVM attestations [1], [4].

However, the main challenge with hash-based attes-
tation in TEEs today is that the meaning and intended
guarantees that these secure hashes represent must be
established separately. For example, new standards like the
healthcare confidential compute specification [3] include
strong demands for demonstrable properties, such as the
link between source code and attested executable hash
values at runtime, to validate the origin of code running.

Other desirable workload attributes include vetted golden
values of a TEE or other system components, the geo-
graphical location of a TEE, secure binary compilation
options (e.g., compiled with CET), controlled data sources
or network connections, or build pipeline restrictions.
But the semantics of the hash values representing these
attributes are often lost at runtime, especially during soft-
ware updates or changes to the runtime environment.

The current state of the art identifies workload at-
tributes by tracking runtime information [13], [15], al-
lowing a runtime attestation value to be traced back, for
example, to the initial source code, AI model, or training
data. Yet, many attributes still need to be established at
build time or cannot be easily determined dynamically
at execution time. This is a significant drawback for the
dynamic nature of cloud deployments because it hinders
application vendors’ ability to demonstrate specific at-
tributes prior to deployment.

An alternative approach for validating the integrity
of a TEE relies on reproducible builds to exactly re-
create a TEE [7]. Reproducibility, though, requires access
to source code and build configuration, which may be
proprietary, needs a separate authenticity mechanism, and
scales poorly when interested parties need to establish
trust in the TEE dynamically at runtime [9].

Because of the challenges with using hash-based TEE
attestation or reproducible builds in dynamic cloud de-
ployments, users of confidential compute services may
be unable to ascertain workload attributes, even when
they are present. The goal of this paper is to overcome
these limitations with validation and endorsement ser-
vices (VES) that validate TEE attributes. We additionally
address the gap of discovering trustworthy VESes and
validated confidential computing services.

2. Design Overview

Figure 1 illustrates VES components and their inter-
actions. As a pre-requisite, CCS ABC registers its TEE
attestation, which serves as a unique identity, and service
capabilities with a CCS registry. This registry is the central
hub for CCS users to discover CCSes and their endorsed
attributes. To create an endorsement, a CCS first locates
VESes with specific capabilities in the VES registry. A
VES can then validate the attributes of the CCS by con-
sulting an endorsement cache or by directly interacting
with the CCS. If the validation passes, a new endorsement
is created and stored in the endorsement cache.

anjovahldiek@gmail.com
marcela.melara@intel.com


4a) Lookup

Validation &
Endorsement
Service (VES)

Validation & Endorsement
Service Registry

0a) Register

VES
Lookup

Endorsement
Cache

Confidential Compute
Service (CCS) ABC

5) Cache
Endorsement

Endorsement
Lookup

1) Lookup

Confidential Compute
Service Registry

0b) Register

2a) Lookup

2b) Request Endorsement4b) Validate Confidential
Compute Service 

CCS Lookup

3) Lookup

Figure 1. Overview of Endorsement Services Architecture

An essential VES in our architecture is the root VES
from which we bootstrap trust by endorsing attributes
about other VESes (much how certificate authorities are
trusted today). That is, our architecture assumes VES
themselves run in TEEs and allows VESes to treat other
VESes as CCSes. Thus, the root VES is responsible for
performing the remote attestation with any CCS given
different TEE-specific protocols. To gain trust in any root
VES, the entity who operates it must submit its executable
golden values and a certificate generated during the root
VES’ build process into an endorsement cache. This
separation allows us to cryptographically bind the root
VES’ attestation hash to its source code, and is required
to avoid infinite endorsement chains. This approach also
improves upon reproducible builds by addressing the non-
deterministic nature of frequently-updated TEE attestation
values and scalability challenges.

2.1. Validation & Endorsement Services (VES)

VESes provide endorsements that are cryptographi-
cally signed with the VES’ identity. The attributes a VES
endorses are varied and depend on the VES’ own endorsed
capabilities. We consider several VESes in practice:

TEE Golden Values: Given the complexity of TEE
attestation contents, this VES determines at runtime the
expected attestation value depending on deployment spe-
cific parameters (e.g., VM size) or the deployed TEE host
system, which determines ordering of hash computations.
This VES makes it easier to work with TEE attestations,
since CCS users may not know golden values a priori.

Supply Chain: Given a CCS’ runtime hash, the VES
provides authenticated supply chain metadata such a Soft-
ware Bills of Materials (SBOM) [10] or build metadata
for the CCS [14]. This VES could rely on a transparency
log [11] for tamper-evident endorsement caching.

Secure Compilation: Using the Supply Chain VES,
this VES examines finer grained compile-time at-
tributes [8], for instance, to determine if the compilation
used security related flags like control flow integrity or
address sanitization.

Geographical Location: Legislation may limit data
movement across legislative boundaries (e.g., EU borders
in GDPR). This VES performs several ping experiments
with the CCS in question to determine its location and

offer a coarse endorsement in case it is located within
the requested legislative boundary. This process requires
careful consideration of data privacy policies, network
latency and routing paths to ensure accuracy.

Input Limitation: CCSes may restrict their storage
and networking capabilities to improve their security
stance. This VES checks whether runtime parameters
reflect the restriction.

To discover any of these VESes with the expected
security stance CCS users may query the VES registry.
The query requires both the VES’ capabilities and desired
attributes. Ideally, the VES registry is decentralized to
avoid a single point of failure and a single controlling
entity to avoid availability issues.

2.2. Discovering CCSes with Specified Attributes

The final step in our proposed architecture is the dis-
covery of CCes that meet specified attributes. This process
allows users to find services that have been endorsed
by trusted parties for the attributes they require. The
discovery mechanism should be user-friendly, efficient,
and capable of handling a large number of services.

To achieve this, we propose a CCS registry. The
registry not only accepts CCS registrations, but it is also
responsible for requesting CCS endorsements from VESes
if a user looks up a CCS, but no registered CCS has
sufficient endorsements. In this case, the CCS registry
searches for a suitable VES and requests that a CCS that
might fit the user’s request be validated. Upon completion
and storing endorsements in the cache, the registry may
return CCSes that suit the user’s request.

3. Conclusion

In this paper, we present an emerging approach to
enhancing the security and trustworthiness of confidential
compute services (CCS) through the use of validation and
endorsement services (VES). Our proposed architecture
includes mechanisms for discovering and establishing trust
in VESes, using VESes to validate CCS attributes, and
discovering CCSes with specified attributes.

Future work will focus on implementing and evaluat-
ing the proposed architecture in real-world cloud environ-
ments. We plan to explore additional use cases, attributes
and further refine the validation, endorsement and discov-
ery mechanisms to improve their efficiency and security.

Overall, our approach aims to bridge the gap between
the need for dynamic TEE workload attributes and the cur-
rent limitations of hash-based attestations or reproducible
builds, providing a more flexible and trustworthy solution
for confidential compute deployments.

Acknowledgements

Parts of this paper were generated or writing refined
using Github Copilot.

References

[1] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan.
RFC 9334: Remote ATtestation procedureS (RATS) Architecture.
IETF Data Tracker, Jan 2023.



[2] Antoine Delignat-Lavaud, Cédric Fournet, Kapil Vaswani, Sylvan
Clebsch, Maik Riechert, Manuel Costa, and Mark Russinovich.
Why Should I Trust Your Code? Commun. ACM, 67(1), 2023.

[3] Gematic. Healthcare Confidential Compute Specification.
https://gemspec.gematik.de/prereleases/Dev HCC/gemSpec
HCC V0.9.0 20241118/, 2025. Accessed: 2025-02-20.

[4] Google. Verify a Confidential VM instance’s firmware.
https://cloud.google.com/confidential-computing/confidential-vm/
docs/verify-firmware#retrieve, 2025.

[5] Intel. Intel® Software Guard Extensions Programming Refer-
ence. https://www.intel.com/content/dam/develop/external/us/en/
documents/329298-002-629101.pdf, 2014. Accessed: 2025-02-20.

[6] Intel. Intel® Trust Domain CPU Architectural Extensions. https://
cdrdv2.intel.com/v1/dl/getContent/733582, 2021. Accessed: 2025-
02-20.

[7] Chris Lamb and Stefano Zacchiroli. Reproducible builds: Increas-
ing the integrity of software supply chains. 39(2), 2022.

[8] Marcela S. Melara. Software Supply Chain Attribute Integrity
(SCAI). arXiv, 2210.05813, 2023.

[9] Marcela S. Melara and Chad Kimes. Auditing the CI/CD Platform:
Reproducible Builds vs. Hardware-Attested Build Environments,
Which is Right for You? In Proceedings of the ACM Workshop
on Supply Chain Offensive Research and Ecosystem Defenses
(SCORED), 2024.

[10] National Telecommunications and Information Administration.
SOFTWARE BILL OF MATERIALS. https://www.ntia.gov/page/
software-bill-materials, 2025.

[11] Zachary Newman, John Speed Meyers, and Santiago Torres-Arias.
Sigstore: Software signing for everybody. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022.

[12] Mark Russinovich. Azure AI Confidential Infer-
encing: Technical Deep-Dive. https://techcommunity.
microsoft.com/blog/azureconfidentialcomputingblog/
azure-ai-confidential-inferencing-technical-deep-dive/4253150,
2024. Accessed: 2025-02-20.

[13] M. Spoczynski, M. S. Melara, and S. Szyller. Atlas: A Framework
for ML Lifecycle Provenance & Transparency. In Proceedings of
the Workshop on System Software for Trusted Execution (SysTEX),
2025.

[14] The Linux Foundation. Safeguarding artifact integrity across any
software supply chain. https://slsa.dev, 2025.

[15] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and
J. Cappos. in-toto: Providing farm-to-table guarantees for bits and
bytes. In Proceedings of the USENIX Security Symposium, pages
1393–1410, 2019.

https://gemspec.gematik.de/prereleases/Dev_HCC/gemSpec_HCC_V0.9.0_20241118/
https://gemspec.gematik.de/prereleases/Dev_HCC/gemSpec_HCC_V0.9.0_20241118/
https://cloud.google.com/confidential-computing/confidential-vm/docs/verify-firmware#retrieve
https://cloud.google.com/confidential-computing/confidential-vm/docs/verify-firmware#retrieve
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://cdrdv2.intel.com/v1/dl/getContent/733582
https://cdrdv2.intel.com/v1/dl/getContent/733582
https://www.ntia.gov/page/software-bill-materials
https://www.ntia.gov/page/software-bill-materials
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://slsa.dev

	Motivation and Problem Statement
	Design Overview
	Validation & Endorsement Services (VES)
	Discovering CCSes with Specified Attributes

	Conclusion
	References

